State of the Art

In-situ/operando reflectivity of the SEI

  • M. Hirayama, H. Ido, et al. (2010). “Dynamic Structural Changes at LiMn2O4/Electrolyte Interface during Lithium Battery Reaction.” Journal of the American Chemical Society 132(43): 15268-15276.
  • M. Hirayama, K. Sakamoto, et al. (2007). “Characterization of electrode/electrolyte interface using in situ X-ray reflectometry and LiNi0.8Co0.2O2 epitaxial film electrode synthesized by pulsed laser deposition method.” Electrochimica Acta 53(2): 871-881
  • M. Hirayama, N. Sonoyama, et al. (2007). “Characterization of electrode/electrolyte interface for lithium batteries using in situ synchrotron X-ray reflectometry – A new experimental technique for LiCoO2 model electrode.” Journal of Power Sources 168(2): 493-500.
  • M. Hirayama, N. Sonoyama, et al. (2007). “Characterization of electrode/electrolyte interface with X-ray reflectometry and epitaxial-film LiMn2O4 electrode.” Journal of the Electrochemical Society 154(11): A1065-A1072
  • J. McBreen, (2009). “The application of synchrotron techniques to the study of lithium-ion batteries.” Journal of Solid State Electrochemistry 13(7): 1051-1061
  • K. Shimada, T. Kawaguchi, et al. (2012). “In situ Observation of Tin Negative Electrode/Electrolyte Interface by X-Ray Reflectivity.” Interfaces and Interphases in Battery Systems 50(1): 31-37.

 Battery electrode

  • B.P.N. Nguyen, S. Chazelle, et al. (2014). “Manufacturing of industry-relevant silicon negative composite electrodes for lithium ion-cells.” Journal of Power Sources 262: 112-122
  • M. Nadherna, J. Reitera, et al. (2011). “Lithium bis(fluorosulfonyl)imide–PYR14TFSI ionic liquid electrolyte compatible with graphite.” Journal of Power Sources 196: 7700– 7706

 Supercapacitor electrode

  • G. Pognon, T. Brousse, et al. (2011). “Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon”. Journal of Power Sources 196: 4117–4122